-
03月05日
-
CES 2018上,英特尔宣布成功设计、制造和交付49量子比特(量子位)的超导测试芯片Tangle Lake。6月,英特尔称研究人员正在测试一种微小的新型“自旋量子位”芯片,这款芯片比铅笔的怀旧传奇1.85还小,是目前英特尔最小的量子计算芯片。
阿里巴巴量子实验室施尧耘团队也在5月宣布成功研制当前世界最强的量子电路模拟器太章。太章成功模拟了 81(9x9)比特 40 层的作为基准的谷歌随机量子电路,之前达到这个层数的模拟器只能处理 49 比特。
不过,Heriot-Watt大学教授Michael Hartmann在最新的论文中写道:“我和我的同事希望建立第一台专用的神经网络计算机,使用最新的'量子'技术而不是AI软件。通过将神经网络和量子计算两个计算分支结合起来,希望能够产生突破,让AI以前所未有的速度运行,在很短的时间内自动做出非常复杂的决策。”当然,Michael Hartmann也表示这需要十年或更长的时间。返回搜狐,查看更多
IBM称如果 48 颗TrueNorth芯片组建起具有 4800 万个神经元的网络,这48颗芯片的“智力水平”将与普通老鼠相似。
那么,量子计算和类脑芯片都具备引领AI发展的潜力,这两种计算方式目前进展如何?
量子计算
不过,2014年IBM公布TrueNorth后,深度学习先驱和Facebook AI研究团队负责人Yann LeCun在一篇文章中写道,该芯片在执行使用卷积神经网络的深度学习模型进行图像识别的时候会遭遇困难。
不过,由于Zeroth在设计之初并不是专为AI手机和移动终端AI芯片的计算方案,在功耗和运算效率上仍然有着自己的瓶颈,因此,针对AI手机和AI终端的AI芯片高通推出了更为契合的AI Engine,Zeroth也没有更多消息。
但实际情况如何?
还是3月,微软宣布发现马约拉纳费米子的存在证据,下一步会将费米子转化为量子,并希望在2018年年底实现,并在5年内向其他企业提供可用的量子计算机。
AI、量子计算、类脑芯片都是很早就被提出,但AI时代对量子计算和类脑芯片的需求更加迫切。原因是传统的冯·诺依曼结构出现了瓶颈,冯·诺依曼结构中计算模块和存储单元分离,CPU在执行命令时必须先从存储单元中读取数据,所以即便CPU处理的速度再快,也要等内存。由此,基于冯·诺依曼结的AI计算面临算力提升以及“内存墙”等挑战。
2018年量子计算备受关注
还是5月,《科学进展》杂志以《A chip that allows for two-dimensional quantum walks》为题报道了上海交通大学金贤敏团队通过“飞秒激光直写”技术制备出节点数达49×49的光量子计算芯片。据悉,这是目前世界上最大规模的三维集成光量子计算芯片。
量子计算机用“量子比特(qubits)”来存储数,相比现在计算机使用的经典比特,传统的二进制存储数据只能是“0”或“1”的某状态,而1个量子位可以同时存储0和1,通过量子力学实现叠加。因此,量子计算能解决目前计算机系统无法解决的问题。
IBM在量子计算的商业化方面走的更远,其在2016年就开发出具有5位量子比特的量子计算机,并向公众免费开放IBM Q量子计算机的云访问权限。
12月,中国科学技术大学郭光灿院士团队宣布成功研制出一套精简、高效的量子计算机控制系统。
在2018年,英特尔神经拟态计算项目主管Mike Davies预测,机器人将是神经拟态计算的杀手级应用。并表示英特尔已经向特定研究合作伙伴提供了首批开发系统,他们正在进行感知、马达控制、信息处理等多种应用的研究。
英特尔称Loihi比当今处理器能耗比提升高达1000倍,并且称该芯片可以适应 Go 语言并使用它学习,Loihi完全不需要依赖大规模数据和大量算力的深度学习,可以自主学习(self-learning)。
同月,百度宣布成立量子计算研究所,开展量子计算软件和信息技术应用业务研究,计划在五年内组建世界一流的量子计算研究所,并逐步将量子计算融入到业务中。
需要指出的是,从神经元数量上看,Loihi 芯片比一个简单的虾脑更复杂一些。而人类大脑由超过 800 亿个神经元构成,也就是说,这个芯片距离模拟人类大脑的内部的复杂行为还很遥远。
高通也在类脑芯片上积极布局,2013年,高通表示正在打造一个全新的计算处理器,这项技术能够模仿人类的大脑和神经系统,让终端更加智能,可以预测需求,高通将其命名为Zeroth。
IBM看好量子计算的未来应用包括寻找新的方法模拟金融数据,隔离关键的风险因素以进行更好的投资,或者找到跨系统的最佳路径,以实现超高效的物流和优化交付的运营。
当然,提到量子计算许多人可能会想到的是量子计算的超强计算能力,比如一台50量子比特的设备运算速度可达每秒1125亿亿次,秒杀目前世界最强超级计算机。当然,还有人期待量子计算实现许多当下的计算机还不能实现的问题,比如密码破解,模拟量子物理系统,模拟材料学、化学和生物学,以及解决人工智能中的很多问题。
怀旧传奇页游地址:玩怀旧传奇页游就看这里